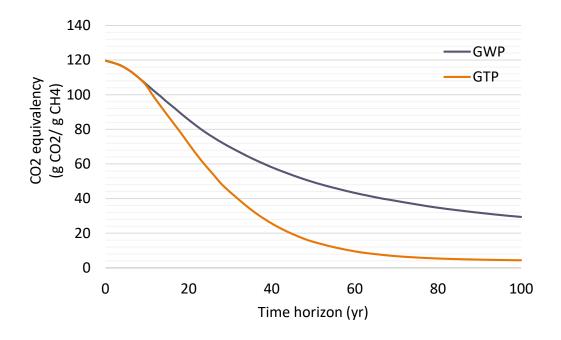


Environmental impacts of LNG as a shipping fuel

LNG in Shipping, Brussels 9th October 2018

> Paul Balcombe Sustainable Gas Institute Imperial College London p.balcombe@imperial.ac.uk

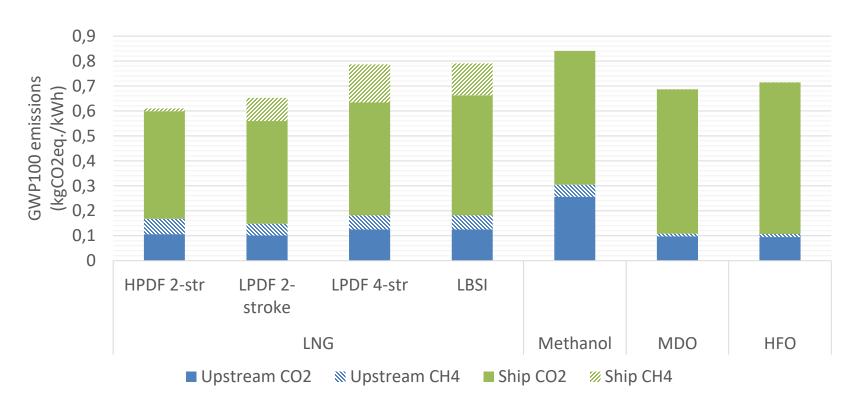

- International shipping is facing tougher constraints: NO_X , SO_X , GHGs
- But shipping demand may grow 50-250% up to 2050

- What role for LNG in meeting these targets?
- Air quality emissions are mostly reduced
- CO₂ emissions are reduced
- But methane may marginalise this benefit?
 - On-board emissions: lack of data
 - Supply chain

Methane and the Climate

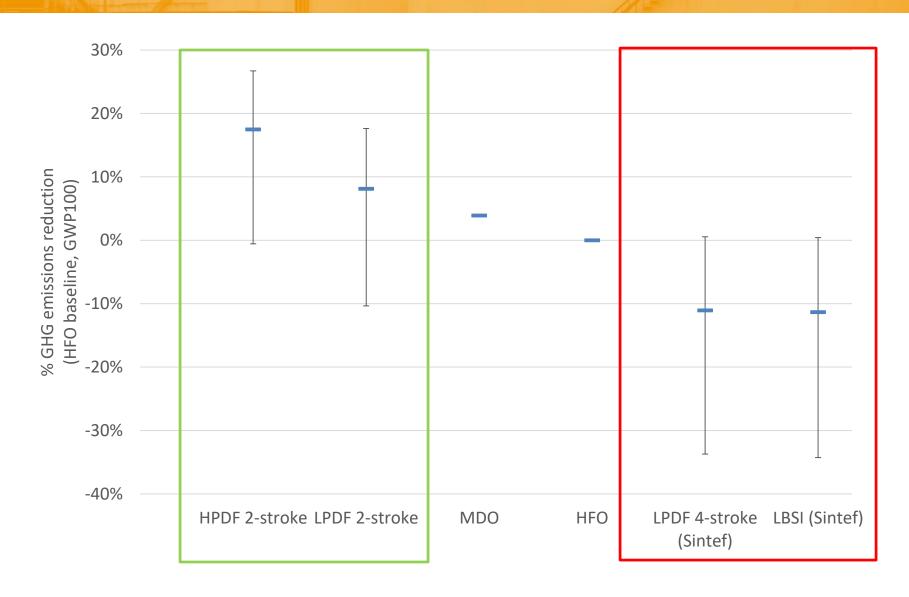
Metric	Methane (Carbon dioxide
Atmospheric lifespan	12 years	100s years
Instantaneous climate forcing	120	1
Global Warming Potential (GWP 20 years)	84-87	1
Global Warming Potential (GWP 100 years)	28-36	1

Small release of methane = large impact (at least in the short term)



Aims and Scope

- Determine the life cycle environmental and economic impacts associated with LNG as a shipping fuel and compare to alternative fuels.
- Determine the methane emissions required to ensure a climate benefit over liquid fuels
- Assess further decarbonisation opportunities and potential for LNG to contribute to IMO target


- 2 LNG engines perform well on a GWP100 basis: HPDF and LPDF 2-stroke
- High engine efficiencies and lower methane emissions
- Methane emissions for other engines are unacceptably high from the best available data

The GHG reduction potential of LNG

Imperial College London

The Pros and Cons of LNG

	LNG:				Methanol	MDO	HFO
	LPDF 4- stroke	LBSI	HPDF 2- stroke	LPDF 2- stroke			
GWP100	×	×	✓	-	×	×	×
Climate long term (GTP100)	-	-	✓	✓	×	×	×
Climate short term (GWP20)	хх	жж	✓	×	×	×	×
Ozone creation	✓	✓	×	✓	×	-	×
NOX	✓	√√	хх	√√	✓	×х	хx
SOX	√√	√√	√√	√√	√√	-	хx
Particulates	√√	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	$\checkmark\checkmark$	✓	××
Cost	√√	//	$\checkmark\checkmark$	√√	××	××	×

- LNG performs well on most indicators, but is penalised by methane emissions.
- HPDF engines perform the best regarding climate and cost, but not NO_x .
- Measured methane emissions data is lacking

Further conclusions

- If methane emissions are constrained, a combination of LNG and other efficiency measures, together with bio-LNG will enable IMO decarbonisation targets to 2050.
- Great care must be taken to avoid supply chain routes with high embodied emissions and the impact of 'super-emitters'.
- There is an urgent need for more independent, transparent and robust measurements of emissions to prove environmental credentials:
 - ➤ LNG-fuelled ships in operation
 - LNG shipping
 - > LNG bunkering
 - Across the supply chain in general for regions other than the US